GMM and neural networks were trained for age interval and sex identifications using speech short term features[1]. Homayounpour and Khosravi make an effort on identifying speaker age interval using SVM model and MFCC and LPCC

نویسندگان

  • Sumit Kumar Banchhor
  • S. K. Dekate
چکیده

164 Abstract— Differences of physiological properties of the glottis and the vocal track are partly due to age and/or gender differences. Since these differences are reflected in the speech signal, acoustic measures related to those properties can be helpful for automatic gender classification. Acoustics measures of voice sources were extracted from 10 utterances spoken by 20 male and 20 female talkers (aged 19 to 25 year old). The difference of speech long term features, including zero crossing rate, short time energy, and spectrum flux between male and female is studied. The result shows that the estimation of short time energy reflects more effectively, the difference in male and female voice than zero crossing rate and spectrum flux.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

A Survey on Speech Recognition Algorithms

peaker recognition is a process where a person is recognized on the basis of his/ her voice signals. Human voice is aunique characteristic for any individual.Speaker recognition is being applied in biometric identification, security related areas, remote access to computers etc.This paper delivers an overview of different techniques that can be used in application of speaker recognition such as...

متن کامل

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

Combining deep speaker specific representations with GMM-SVM for speaker verification

This study combines a Gaussian mixture model support vector machine (GMM-SVM) system with a nonlinear feature transformation, discriminatively trained to extract speaker specific features from MFCCs. Separation of the speaker information component and non-speaker related information in the speech signal is accomplished using a regularized siamese deep network (RSDN). RSDN learns a hidden repres...

متن کامل

Robust Text Independent Speaker Identification Using Hybrid GMM-SVM System

This paper introduces and motivates the use of the statistical method Gaussian Mixture Model (GMM) and Support Vector Machines (SVM) for robust textindependent speaker identification. Features are extracted from the dialect DR1 of the Timit corpus. They are presented by MFCC, energy, Delta and Delta-Delta coefficients. GMM is used to model the feature extractor of the input speech signal and SV...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011